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A fast nested multi-grid viscous flow solver for adaptive
Cartesian/Quad grids
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SUMMARY

A nested multi-grid solution algorithm has been developed for an adaptive Cartesian/Quad grid viscous
flow solver. Body-fitted adaptive Quad (quadrilateral) grids are generated around solid bodies through
‘surface extrusion’. The Quad grids are then overlapped with an adaptive Cartesian grid. Quadtree data
structures are employed to record both the Quad and Cartesian grids. The Cartesian grid is generated
through recursive sub-division of a single root, whereas the Quad grids start from multiple roots—a
forest of Quadtrees, representing the coarsest possible Quad grids. Cell-cutting is performed at the
Cartesian/Quad grid interface to merge the Cartesian and Quad grids into a single unstructured grid with
arbitrary cell topologies (i.e., arbitrary polygons). Because of the hierarchical nature of the data structure,
many levels of coarse grids have already been built in. The coarsening of the unstructured grid is based
on the Quadtree data structure through reverse tree traversal. Issues arising from grid coarsening are
discussed and solutions are developed. The flow solver is based on a cell-centered finite volume
discretization, Roe’s flux splitting, a least-squares linear reconstruction, and a differentiable limiter
developed by Venkatakrishnan in a modified form. A local time stepping scheme is used to handle very
small cut cells produced in cell-cutting. Several cycling strategies, such as the saw-tooth, W- and V-cycles,
have been studies. The V-cycle has been found to be the most efficient. In general, the multi-grid solution
algorithm has been shown to greatly speed up convergence to steady state—by one to two orders.
Copyright © 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

It is generally recognized that unstructured grid-based computational fluid dynamics (CFD)
algorithms offer the best promise for automation in fluid flow simulations. The last decade has
seen a tremendous progress in unstructured grid methods. Types of unstructured grids include
classical triangular or tetrahedral grids [1–5], quadrilateral or hexahedral grids [6], prismatic
grids [7], or mixed grids [8,9]. The most appealing properties of unstructured grids are the
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geometric flexibility and the ease in which the grid can be adapted according to flow features.
Tetrahedral grids are the easiest to generate. Many well-known grid generation algorithms,
such as the advancing front [10] and the Delauney triangulation method [11], have been
developed to generate tetrahedral grids for complex geometries. However, experience has
indicated that tetrahedral grids are not as efficient and/or accurate as hexahedral or prismatic
grids for viscous boundary layers. On the other hand, prismatic grids and hexahedral grids can
resolve boundary layers more efficiently, however, they are more difficult to generate than
tetrahedral grids. Many CFD researchers have come to the conclusion that mixed grids (or
hybrid grids) are the way to go.

Recently, there has been a renewed interest in using Cartesian grids for complex geometries
[12–17]. Coupled with a tree-based data structure and grid adaptation, with respect to both the
geometry and the flow field, these methods have been demonstrated to be very viable tools for
inviscid flows, with very complex geometry. The main advantages of the Cartesian grid
methods are the following: (1) automatic grid generation, (2) automatic grid adaptation, and
(3) simplified data structure. With the adaptive Cartesian grid approach, grid-independent
solutions have been obtained [13]. To achieve the same solutions with a non-adaptive mesh
would be prohibitively expensive.

One obvious drawback of the adaptive Cartesian grid method is its inability to support
directional grid adaptation required in viscous boundary layer-type flow problems. Conven-
tional grid adaptations in a boundary layer are not only too expensive but inefficient as well
[14]. Furthermore, the irregular cut cells near the solid wall boundaries have been shown to
produce non-positive numerical scheme for the Navier–Stokes equations and may cause
convergence problems. To eliminate this problem, Karman [18] introduced the adaptive
Cartesian/prism method, in which an adaptive Cartesian grid and a fixed prism grid are mixed
to tackle viscous flows. Very complex flow problems were tackled successfully. One defect of
this method is the use of a fixed prism grid, which partly negates the effectiveness of grid
adaptation performed in the Cartesian grid. This defect has motivated the present author to
develop a hybrid adaptive Cartesian/adaptive prism grid methodology. This method has been
successfully demonstrated in the two-dimensional case in an early study [19]. Grid-independent
inviscid and viscous solutions have been obtained through automatic grid adaptation.

One distinctive advantage of a structured grid over an unstructured grid is that multiple
levels of coarse grids can be easily generated through coarsening in each co-ordinate direction.
These coarse grids are nicely nested (i.e., fine grid cells are embedded in the cells of the coarse
grid). Very efficient multi-grid solution algorithms can then be implemented. For an unstruc-
tured grid (not the tree-type), coarse grids need to be either generated independently [20] or
conglomerated [21] through some very sophisticated algorithms. The tree-based adaptive
Cartesian grid has the same advantage as the structured grid in that many levels of coarse grids
can be easily generated through tree traversals from leaves to roots simply because the
computational grid is generated through recursive sub-divisions of a base grid. In the case of
an adaptive Cartesian grid, the computational grid is produced through sub-divisions of a
single cell.

In this paper, an efficient multi-grid algorithm for the adaptive Cartesian/Quad (quadrilat-
eral) grid viscous flow solver is developed. For the sake of completeness, the issues concern-
ing the adaptive Cartesian/Quad grid methodology are discussed first. Then, coarse grid
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generation through reverse tree-traversal is described. Next, the full approximation storage
(FAS) multi-grid algorithm for the adaptive Cartesian/Quad grid solver is developed, and grid
adaptation criteria are discussed. After that, several test cases will be shown to demonstrate the
performance of the algorithm. Finally, conclusions from the study are summarized.

2. ISSUES ON ADAPTIVE CARTESIAN/QUAD GRID GENERATION

2.1. Data structure

A hierarchical cell-based Quadtree data structure [13] is employed for both the Cartesian and
the Quad grids, i.e., parent cells can be refined by division into four children. Each node of the
Quadtree represents a Cartesian or Quad cell. To enable recursive tree traversals in both
directions (from parent to children or otherwise), each cell has a pointer to its parent cell (if
one exists) and to its four children (if they exist). The cells farthest down the hierarchy, i.e., the
finest grid cells with no children, are the cells on which the calculation takes place. Since the
Cartesian grid is generated from a single cell through recursive sub-divisions, a single Quadtree
is employed for the Cartesian cells. Multiple Quadtrees are used for the Quad cells with the
roots of these Quadtrees corresponding to the coarsest Quad cells. Mutual relations of the
coarsest Quad grids are stored in a connectivity array.

Each tree node also stores the pointers to the four corner vertices. With these vertices, the
geometry of the cell represented by the tree node is well defined. These pointers are
automatically updated during recursive grid sub-divisions.

2.2. Adapti6e Quad grid generation

A unique feature of the current approach is that adaptive Quad grids are generated around
solid bodies, such that viscous boundary layers can be properly resolved through non-isotropic
grid adaptations. In this study, two-dimensional geometries are represented by segments of
cubic B-Spline curves and straight lines. The geometry is preserved at all levels of grid
adaptations. The generation of the Quad grids is fulfilled in the following steps:

2.2.1. Boundary discretization. The boundary curves are discretized based on three user-
specified parameters, dsmin, dsmax, a. The lengths of the boundary segments are always
bounded by dsmin and dsmax. An angular criterion is used to cluster more grid points near high
curvature parts of the curve. This criterion dictates that the angle between two neighboring
segments should be less than a.

2.2.2. Surface extrusion. The technique to generate the Quad grid is similar to the hyperbolic
or advancing layer grid generation approaches [22], i.e., to extrude the surface grid along the
surface normal directions. For concave surfaces, however, it is possible that surface normals
cross into each other, resulting in folding Quad cells with negative volumes. This problem is
eliminated by first smoothing the surface normals in the neighborhood of the crossings. If the
problem of folding Quad cells still exists the normal distances of Quad cells are reduced locally
until no crossings occur. By connecting each point on the body surface with the corresponding
point of the ‘extruded’ surface, one obtains one layer of quad cells. The initial height of the
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Quad is prescribed by the user based on the thickness of the boundary layers depending on the
Reynolds number. This layer of Quads is further divided into several layers with grid clustering
near the body surface. The resultant Quad mesh is then the root mesh that further tree-based
grid refinements are based on.

Ideally the outer most layer of the Quad grid should be isotropic to match the adaptive
Cartesian cells. To achieve this, one can use different local viscous layer heights depending on
the local boundary curvature and boundary discretization. This approach may be difficult to
implement when multiple bodies are close to each other. In this paper, a fixed viscous layer
height is used everywhere except in regions where boundary normals cross in each other, or
multiple bodies are close to each other. In those regions, the viscous layer height is locally
reduced to enable the generation of a valid mesh. This approach can always produce a valid
mesh. However, the cells near the outer boundary of the Quad mesh are usually anisotropic.
The strategy in this paper is to reduce the effects of grid non-smoothness through solution
based grid adaptations. It will be shown later that smooth solutions are obtained near the
Cartesian/Quad interfaces.

2.2.3. Recursi6e sub-di6isions. The root mesh is usually very coarse and several levels of
automatic grid refinement are performed first. After that, the grid is adapted according to local
curvatures until a more strict angular criterion is satisfied. Because the grid will also be
adapted according to the flow field, the quality of the initial grid is not as important as that
of a fixed grid. As long as the initial grid adequately resolves the geometric features, the flow
features will be resolved through flow-based grid adaptations.

2.2.4. Grid smoothing. The resultant grid is then further smoothed such that some unwanted
properties are eliminated. For example, the cell level difference between any neighbors should
be at most one.

2.3. Adapti6e Cartesian grid generation

The Cartesian grid is generated from one large root cell, which covers the complete flow field
through recursive sub-divisions. The roots Cartesian cell is sub-divided recursively until a user
specified minimum grid resolution is obtained. Then the Cartesian cells, which are intersected
by the outer boundaries of the Quad grids, are further divided until these Cartesian grid cells
have as comparable grid resolutions as the Quad cells.

2.4. Cell cutting

Due to the appearance of the Quad grids, holes are cut out of the Cartesian grid using the
outer boundaries of the Quad grids. The basic algorithm for cell cutting is line–line intersec-
tion. The arbitrarily shaped polygon cells resulting from cell cutting are called cut cells. Cells
that lie completely inside the Quad grids are excluded from the computational domain. An
example of cell cutting is shown in Figure 1. The final computational grid consists of cells with
an arbitrary number of edges (e.g., an edge with a hanging node is actually treated as two
separate edges). All cells (Cartesian, Quad, and cut cells) are treated in the same manner. It
will been shown that this uniform treatment is highly efficient when reconstruction coefficients
are stored.
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Figure 1. Illustration of cell cutting at Cartesian/Quad interface.

3. COARSE GRID GENERATION

Since the Quadtree data structure has all levels of grid cells built in (from root to leaf) it is easy
to construct several levels [3–5] of nested coarse grids for the multi-grid solution procedure. A
cell’s level in the tree is defined as the number of successive parents to the root cell. For M
multi-grid levels, the cells on multi-grid level M correspond to the finest level, containing all
the computational cells without children, i.e., the leaves of the Quadtrees. Therefore, it is
obvious that cells on the same multi-grid level can be different cell levels in the tree. In
constructing multi-grid level M−1 from level M, cells that are located in the same Quad and
that all belong to level M are allowed to coarsen. As a consequence, some cells are not
coarsened and are included in more than one multi-grid level. To illustrate this situation, an
example of grid coarsening is shown in Figure 2.

It is seen that cell A belongs to one multi-grid level, cell B is included in two multi-grid
levels, and cell C occupies three multi-grid levels.

Cell cutting at the Cartesian/Quad interface can cause a slight complication, which needs
special treatment. A situation is shown in Figure 3. When the fine grid is coarsened, the coarse
grid cell is intersected by the interface twice. In this case, two separate coarse grid cut cells
(denoted by the shadowed cells) are produced for the Quad. This situation is allowed because
flow variables are associated with cells in the cell list rather than the Quads in the Quadtree,
since the flow solver is directly operated on the computational grid with cell, face, and node
lists generated from the Quad trees rather than the Quad trees themselves.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 657–680



Z. J. WANG662

Figure 2. Illustration of grid coarsening for multi-grid.

Figure 3. Illustration of grid coarsening for a cut cell.

4. MULTI-GRID FLOW SOLVER

The Navier–Stokes equations in integral form can be written as

&
V

dQ
dt

dV+
&

S

(F−Fv) dS=0 (1)
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where Q is the vector of conserved variables, and F and Fv are the inviscid and viscous flux
vector respectively. In all the calculations to be shown the perfect gas law is assumed. The
integration of Equation (1) in a control volume, V, gives

dQ(
dt

V+%
f

FfSf=%
f

FvfSf (2)

where Q( is the cell averaged conserved variable, and Ff and Fv, f are the numerical inviscid and
viscous fluxes at face f. The overbar of Q( will be dropped from here on. Several ingredients of
the flow solver—reconstruction, Riemann solver, viscous flux calculation and time integra-
tion—will be briefly described in the following sub-sections.

4.1. Reconstruction

In a cell centered finite volume procedure, flow variables are known in a cell average sense. No
indication is given as to the distribution of the solution over the control volume. In order to
evaluate the flux through a face, flow variables are required at both sides of the face. This task
is fulfilled by reconstruction. A least-squares reconstruction method [23] is selected in this
study. This reconstruction is capable of preserving a linear function on an arbitrary grid. To
be more specific, we seek to reconstruct the gradient (qx, qy) of current cell c (q indicates
primitive variables) from data at first face neighbor cells, i.e.,

q(x, y)=qc+qx(x−xc)+qy(y−yc) (3)

with

qx=
1
D
�

Iyy %
n

(qn−qc)(xn−xc)−Ixy %
n

(qn−qc)(yn−yc)
n

qy=
1
D
�

−Ixy %
n

(qn−qc)(xn−xc)+Ixx %
n

(qn−qc)(yn−yc)
n

Ixx=%
n

(xn−xc)2

Ixy=%
n

(xn−xc)(yn−yc)
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Iyy=%
n

(yn−yc)2

D=IxxIyy−Ixy
2

where n indicates the support neighbor cells. It can be seen that the reconstruction can be
performed efficiently with one loop over neighboring cells once Ixx, Ixy, and Iyy are stored for
each cell. A limiting procedure is employed to avoid numerical oscillations at steep gradients.
A limiter f is applied to Equation (3) to give

q(x, y)=qc+f9q ·(r−rc) (4)

A single limiter f is used for all variables. A limiter shown to have a good convergence rate
was chosen in this study [3]. It is well known that limiters hinder convergence to steady state.
Venkatakrishnan found that limiting in near constant flow regions caused the convergence to
stall, and suggested the following limiter:

f=
1

D−

� (D+
2 +e2)D− +2D−

2 D+

D+
2 +2D−

2 +D+D− +e2

n
(5)

with

D− =q−qc

D+ =
!qmax−qc if D−\0

qmin−qc if D−B0

e2= (KV)3 (6)

where K is a constant and V is the mesh size, qmax and qmin are the maximum and minimum
values over the current cell and its neighbors. Note that e has the dimension of q itself. It is
obvious that K is very difficult to determine since it is dependent not only on the mesh size but
also on the flow variable. With an adaptive grid, the mesh sizes can vary drastically with the
ratio between the biggest and the smaller cell size exceeding six orders. The parameter e2 as
defined in (6) can vary by 18 orders or more, causing not enough limiting at some large cells,
and too severe limiting at some small cells. Numerical tests showed that it was nearly
impossible to select an appropriate constant K that yields smooth and stable solutions. The
difficulty in selecting a proper constant K may also be attributed to the fact that the adaptive
Cartesian mesh is intrinsically non-smooth. The sizes of many neighboring cells differ by a
factor of 2. As a result, parameter e2 can differ by a factor of 8 in neighboring cells causing
convergence difficulties. In order to relieve this difficulty, e is redefined in this paper as

e=e %(qmax−qmin) (7)

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 657–680



A FAST NESTED MULTI-GRID VISCOUS FLOW SOLVER 665

with e %� (001, 0.20) and qmax, qmin are the maximum and minimum of q over the entire
computational domain. With this definition, oscillations exceeding a certain percentage of the
maximum range of the flow field are limited, and e % is a non-dimensional quantity. Note that
parameter e is independent of the local cell size. Numerical tests indicated that the limiters only
fired near discontinuities, while remaining nearly 1 at smooth flow region with the new
definition. Therefore, the globally accuracy of the flow solver is not compromised. One can,
however, relate the parameter e to the minimum grid size in the flow domain, i.e., e can be
reduced when the grid is refined. For most cases, it has been found an e % value of 0.05 yields
good results. This modification has worked very satisfactorily for all the cases.

4.2. Riemann sol6er

The Riemann solver selected is Roe’s approximate Riemann solver for its simplicity and
accuracy for viscous flow. It is used to calculate the inviscid flux through a face with normal
n, left and right flow variables qL and qR, i.e.

F=F(qL, qR, n) (8)

Details of this Riemann Solver are contained in Reference [24].

4.3. Viscous flux

The viscous flux at a face can be expressed as a function of flow variables and of their
gradients, i.e.

Fv, f= fv(qf, 9qf) (9)

where qf is obtained through simple averages of qfL and qfR. If simple averages of 9qL and 9qR

are used at the face, decoupling of the first face neighbor cells results. Hence, the following
viscous reconstruction is developed for both efficiency and accuracy.

Let m be the unit normal in the face tangential direction and l be the unit vector connecting
the left cell and the right cell of a face. The derivative of variable in the m-direction is obtained
from the cellwise inviscid reconstruction, i.e.

dq
dm

=
1
2

[9qL ·m+9qR ·m] (10)

where 9qL and 9qR are the gradients in the left and right cells of the face from the inviscid
reconstruction. Then, dq/dl is calculated from definition, i.e.

dq
dl

=
qR−qL

�rR−rL� (11)

Finally, 9q={qx, qy} is solved from the two equations
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qx ·mx+qy ·my=
dq
dm

qx · lx+qy · ly=
dq
dl

(12)

This reconstruction has the advantage of compact support (using data at the two cells sharing
the face) but avoids an expensive separate reconstruction for viscous fluxes. The k–e model
[25] with wall functions was implemented to handle turbulent flows at high Reynolds number.
The effective viscosity is used instead of the dynamic viscosity in the governing Navier–Stokes
equations for turbulent flows.

4.4. Time integration with multi-grid

A FAS multi-grid algorithm has been implemented in this study [26]. To be more specific, we
solve

Lh(Qh)=rh (13)

In Equation (13), h denotes the finest mesh and rh=0. Given a sequence of grids symbolically
represented by (h, 2h, 4h, . . . ) and the initial solutions on the finest mesh Qh, the following
steps are used to update the solution on the fine mesh in one cycle.

1. Improve Qh by application of n1 times the smoother to

Lh(Qh)=rh (14)

2. Find an approximate solution Q2h on the next coarser mesh

Q2h=Ih
2hQh (15)

3. Compute the defect

dh=rh−Lh(Qh) (16)

4. Compute

r2h=L2h(Q2h)+I( h
2hdh (17)

5. Do n2 times. Solve

L2h(Q2h)=r2h (18)

to obtain Q( 2h
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6. Correct the current solution on the fine mesh by

Q( h=Qh+I2h
h (Q( 2h−Q2h) (19)

7. Improve Q( h by applications of n3 times the smoother to

Lh(Qh)=rh (20)

When solving Equation (18), the same procedure can be used on grid 2h and grid 4h. This
procedure is carried out until the coarsest grid, where an equation like (18) is solved up to a
given degree of accuracy. The restriction operator, Ih

2h use in Equation (15) is a volume
weighted averaging of conserved variables. The restriction operator, I( h

2h, used in Equation (17)
is a summation of all defects of the finer grid cells. The prolongation operator, I2h

h , used in
Equation (19) is a piecewise linear distribution. In this study, three to five levels of coarse grids
were employed. It was found no further speed up was obtained with more than five levels of
grids.

An explicit three-stage scheme is used as the smoother for Equation (14), i.e.

Q (0)=Qn

Q (k)=Q (0)+ak

Dt
V

[L(Q (k−1))−r ]; k=1, 2, 3

Qn+1=Q (3) (21)

with a1,2,3=0.18, 0.5, 1.0 for optimal damping for high frequency errors [27].
All the popular cycling strategies can be obtained by adjusting n1, n2, and n3, i.e.

Saw-tooth cycle: n1=1, n2=1, n3=0
V-cycle: n1=1, n2=1, n3=1
W-cycle: n1=1, n2=2, n3=1

5. SOLUTION-BASED GRID ADAPTATION

To achieve automation in flow simulation, grid adaptation is essential. There are a variety of
adaptation criteria in the literature. A comprehensive study was performed in Reference [13].
It was identified that a criterion based on compressibility and rotationality worked best, and
it is selected in this study. Briefly, grid adaptation is based on a statistical description of two
parameters

tci= �9×v�di
3/2 (22a)
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tdi= �9 ·v�di
3/2 (22b)

where v is the velocity vector, i=1, 2, . . . , N (N being the total number of cells), and d=V1/2

(V is the volume of the cell). The standard deviation of both parameters is computed as

sc=

D %
N

i=1

t ci
2

N
, sd=

D %
N

i=1

tdi
2

N
(23)

Then the following conditions are used for grid adaptation:

1. if either tci\sc or tdi\sd, cell i is flagged for refinement;
2. if both tci\1/10sc and tdi\1/10sd, cell i is flagged for coarsening.

The parameters in Equation (22) need to be modified for stretched cells in an arbitrary
direction to take into account of the cell aspect ratio [19].

Apart from grid adaptation based on divergence and curl, the first cells away from solid
bodies are also adapted based on the local cell Reynolds number, which is defined by

Recell=
r �6 �Dn

m
(24)

where r and m are the density and dynamic viscosity respectively, Dn is the distance from the
cell center to the solid body. Cells with Recell\1 are refined.

6. TEST CASES

6.1. Case 1. Transonic flow around NACA0012 airfoil (M�=0.85, a=1°)

This case was chosen as a validation case and to study the different cycling strategies in the
multi-grid algorithm. This flow is characterized by two shock waves on both the upper and
lower surfaces and is a good test case of shock capturing and grid adaptation capabilities of
the flow solver. A coarse initial grid was first generated with the described technique. The
geometry was discretized with 101 points, which were then splined by the code. The initial grid
has a total of 2184 cells and is displayed in Figure 4. The outer boundary was placed at 250
chords away from the airfoil. Three extra levels of nested coarse grids are then produced for
the multi-grid algorithm. Converged solutions were obtained on each level of adaptive grid
before the grid was further adapted. Five levels of grid adaptation (both refinement and
coarsening) were carried out. The adapted grid at level 5 has 17136 cells and is displayed in
Figure 5(a). The corresponding coarse grids for this grid is shown in Figure 5(b)–(d). It is
obvious that fine grid cells were automatically generated for both the strong and the week
shocks and the shear layer. Furthermore, grid cells were also refined in smooth flow regions
for expansion and compression waves, which is critical to resolve global flow features. The
Mach number contours on the finest grid are shown in Figure 6. This picture confirms that
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Figure 4. Initial grid for transonic flow around NACA0012 airfoil.

high gradient flow features (shocks, shear layer) were resolved very well. It is also observed
that contour lines pass very smoothly from the Quad grids to the Cartesian cells even in the
presence of highly irregular cut cells.

Three multi-grid cycling strategies (V, W and saw-tooth) were compared in this case. The
parameter e % was set at 0.025 for the modified Venkatakrishnan limiter. Convergence histories
in terms of the number of multi-grid cycles with and without multi-grid on the level 2 adaptive
grid are shown in Figure 7. Note that the W-cycle took the least number of multi-grid cycles
to reach the steady state, followed by the V-cycle. The saw-tooth cycle failed to reach a steady
state in this case. Because the W-cycle took more CPU time than the V-cycle, it is not
necessarily true that the W-cycle is more efficient than the V-cycle. As a matter of fact, the
contrary is true. The convergence histories in terms of CPU seconds on an SGI R4400 machine
are presented in Figure 8. The V-cycle is clearly the most CPU-efficient. As a result, all the rest
of the cases were simulated with the V-cycle.

6.2. Case 2. Multi-element airfoil case

This configuration was produced by McDonnell Douglas Aerospace (MDA) and has been
investigated experimentally as part of a cooperative effort between MDA and NASA Langley
[28]. Extensive experimental data is available for validating CFD codes. The test flow
conditions are: M�=0.2, a=16° and Re=9×106 based on the chord length. The flow was
simulated as turbulent with the k–e model and wall functions. The initial grid for this case is
shown in Figure 9. The grid has a total of 9410 cells. The coarse grids used in the multi-grid
algorithm are shown in Figure 10. Two levels of grid adaptation were carried out beyond the
base mesh. The final grid has 31730 cells and is displayed in Figure 11. The computed Mach
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Figure 5. Final grid for NACA0012 airfoil. (a) Base grid (multi-grid level 4); (b) multi-grid level 3; (c)
multi-grid level 2; (d) multi-grid level 1.

contours on the final adapted grid are shown in Figure 12, and the Cp profile is compared with
experiment data in Figure 13. Note that after the first grid adaptation step, the computed Cp
profile is nearly identical to the profile after the second grid adaptation step, indicating a clear
trend toward a grid-independent solution. The converged Cp profile also showed an excellent
agreement with the experimental data. In an earlier simulation assuming inviscid flow, the
computed Cp profile shown in Figure 14 displays a visible difference between the simulated
and experimental data, demonstrating the importance of capturing flow turbulence in high-
Reynolds number flows. The convergence histories on all three levels of adaptive grids are
shown in Figure 15. Note the convergence rate was quite good.

6.3. Case 3. Viscous flow o6er a backward-facing step

The case of backward-facing steps flow is widely used for benchmark validation of CFD
method because detailed experimental data is available for this case [29]. The flow conditions
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Figure 6. Mach number contours for transonic flow around NACA0012 airfoil.

Figure 7. Convergence histories with and without multi-grid in terms of multi-grid cycles.
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Figure 8. Convergence histories with and without multi-grid in terms of CPU seconds.

Figure 9. Initial computational grid for subsonic flow around a multi-element airfoil.
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Figure 10. Different levels of coarse grids for the initial computational grid.

used are M�=0.2 and Re=389. The initial grid has 2070 cells and is shown in Figure 16(a).
Five levels of grid adaptation were then performed. The final grid has 24654 cells and is
presented in Figure 16(b). At each grid, four multi-grid levels were used in the multi-grid
solution procedure. Convergence history in terms of multi-grid V-cycles is displayed in Figure
17. It is a pleasant surprise that a near constant convergence rate was obtained on all levels of
grids, which is achievable with multi-grid but rarely realized in practical flow simulations.
Velocity profiles at x/s=4.18 (s being the height of the step) from the present simulation are
compared with experimental data in Figure 18. It is observed that a grid-independent velocity
profile was obtained after three levels of grid adaptation. The convergence of the main
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Figure 11. Computational grid for multi-element airfoil after two levels of grid adaptation.

Figure 12. Computed Mach contours on the final grid for multi-element airfoil case.

reattachment point after the step is illustrated in Figure 19, which plots the skin friction
coefficients at the lower channel wall. The trend of grid convergence is clearly conveyed by the
figure. It is obvious that Cf is a bit more difficult to converge than the velocity profile. In this
case, four levels of grid adaptation were required. The converged reattachment point is located

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 657–680



A FAST NESTED MULTI-GRID VISCOUS FLOW SOLVER 675

Figure 13. Comparison of Cp distributions on airfoil surfaces between computations and experiment
assuming turbulent flow.

Figure 14. Comparison of Cp distributions on airfoil surfaces between computations and experiment
assuming inviscid flow.
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Figure 15. Convergence histories on different levels of grids.

Figure 16. Adaptive computational grids for backward-facing step problem.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 657–680



A FAST NESTED MULTI-GRID VISCOUS FLOW SOLVER 677

Figure 17. Convergence history on different levels of grids for backward-facing step problem.

Figure 18. Comparisons of velocity profile between experiment and computations at x/s=4.18.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 657–680



Z. J. WANG678

Figure 19. Skin friction distributions at lower channel wall.

Figure 20. Computed streamlines on the final grid.

at x/s=8.0, which is in good agreement with experimentally measured position of x/s=8.25.
The streamlines computed with the final grid are shown in Figure 20, which are very smooth.

7. CONCLUSIONS

A Quadtree-based adaptive Cartesian/Quad grid generator, grid adaptor, and multi-grid flow
solver have been developed and successfully demonstrated in this study. The hybrid Cartesian/
Quad grid generation procedure was shown to be robust and general. Complex geometries
were tackled successfully. In addition, the Quadtree data structures enable nested coarse grids
to be easily generated for an efficient multi-grid solution procedure. Different cycling strategies
for multi-grid (i.e., saw-tooth, V and W) were tested on a variety of flow problems. The
V-cycle was identified to be the most CPU efficient. Multi-grid was shown to speed up
convergence to steady state by at least an order of magnitude in CPU. The grid adaptation
criteria were demonstrated to perform well. Grid-independent inviscid and viscous solutions
have been achieved through automatic grid adaptation.
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